PROOFS WITH EVEN MORE RULES

These are the proofs from Exercise 1.5.4 for which proofs are not found in the back of the text. Derived rules are liberally used.

Exercise 1.5.4

S64: ~P->P -||- P

Left to right:

1(1)~P->P A
2(2)~PA
1,2(3)P1,2 ->E
1(4)P2.3 RAA (2)

Right to left:

1(1)P A
1(2)~P->P1 FA (or TC)

S65: P<->Q -||- ~((P->Q)->~(Q->P))

Left to right:

1(1)P<->Q A
1(2)P->Q1 <->E
1(3)Q->P1 <->E
1(4)(P->Q)&(Q->P)2,3 &I
1(5) ~((P->Q)->~(Q->P))4 Neg->

Right to left:

1(1)~((P->Q)->~(Q->P)) A
1(2)(P->Q)&(Q->P)4 Neg->
1(3)P->Q1 <->E
1(4)Q->P1 <->E
1(5)P<->Q 2,3 <->I

S68: P<->Q -||- ~(P&Q)->~(PvQ)

Left to right:

1(1)P<->Q A
2(2)PvQA
2(3)~P->Q2 v->
1(4)P->Q 1 <->E
1,2(5)Q3,4 SD
2(6)~Q->P2 v->
1(7) Q->P 1 <->E
1,2(8)P6,7 SD
1,2(9) P&Q5,8 &I
1(10)(PvQ)->(P&Q) 9 ->I (2)
1(11)~(P&Q)->~(PvQ)10 Trans

Right to left:

1(1)~(P&Q)->~(PvQ) A
2(2)~(P<->Q)A
2(3)~P<->Q2 Neg<->
1(4)(PvQ)->(P&Q)1 Trans
2(5)~P->Q3 <->E
2(6)PvQ5 v->
1,2(7) P&Q4,6 ->E
2(8)Q->~P3 <->E
1,2(9)Q7 &E
1,2(10)~P8,9 ->E
1,2(11)P7 &E
1(12)P<->Q 10,11 RAA (2)

S69: P<->Q -||- ~(~(P&Q)&~(~P&~Q))

Left to right:

1(1)P<->Q A
2(2)~(P&Q)A
2 (3)~Pv~Q2 DM
2(4)P->~Q 3 v->
1(5)P->Q1 <->E
1,2(6)~P4,5 IA
1,2(7) ~Q1,6 BT
1,2 (8)~P&~Q6,7 &I
1(9)~(P&Q)->~(~P&~Q) 8 ->I (2)
1(10)~(P&Q)v~(~P&~Q)9 v->
1(11) ~(~(P&Q)&~(~P&~Q))10 DM

Right to left:

1(1)~(~(P&Q)&~(~P&~Q)) A
1(2)~(P&Q)->(~P&~Q)1 Neg->
3(3)~PA
3(4)~Pv~Q3 vI
3 (5)~(P&Q)4 DM
1,3(6)~P&~Q2,5 ->E
1,3(7)~Q6 &E
1(8) ~P->~Q7 ->I (3)
9(9)PA
9(10)PvQ9 vI
9(11)~(~P&~Q)10 DM
1,9(12)P&Q2,11 MTT
1,9(13)Q12 &E
1(14) P->Q13 ->I (9)
1(15)Q->P8 Trans
1(16) P<->Q14,15 <->I

S70: PvQ->R&~P, QvR, ~R |- C

1(1)PvQ->R&~P A
2(2)QvRA
3(3)~RA
2,3(4)Q2,3 vE
2,3(5) PvQ4 vI
1,2,3 (6)R&~P1,5 ->E
1,2,3(7)R6 &E
3(8) R->C3 FA
1,2,3(9)C7,8 ->E

S71: ~P<->Q, P->R, ~R |- ~Q<->R

1(1)~P<->Q A
2(2)P->RA
3 (3)~RA
2,3(4)~P2,3 MT
1,2,3(5) Q1,4 BP [S35]
6(6)Q<->RA
1,2,3,6(7) R5,6 BP [S35]
1,2,3(8)~(Q<->R) 3,7 RAA (6)
1,2,3(9)~Q<->R8 Neg<-> (S42)

S72: ~((P<->~Q)<->R), S->P&(Q&T), Rv(P&S) |- S&K->R&Q

1(1)~((P<->~Q)<->R) A
2(2)S->P&(Q&T)A
3(3)Rv(P&S)A
4(4) S&KA
4 (5) S4 &E
2,4(6) P&(Q&T) 2,5 ->E
2,4(7) Q&T6 &E
2,4(8)Q7 &E
1(9) (P<->~Q)<->~R1 Neg<->
10(10)~RA
1,10(11) P<->~Q9,10 BP
1,2,4,10(12)~P8,11 BT
2,4(13) P6 &E
1,2,4(14)R12,13 RAA (10)
1,2,4(15)R&Q13,14 &I
1,2(16)S&K->R&Q 15 ->I (4)

Note: Premise 3 is not used in this proof.

S74: P&(~Q&~R), P->(~S->T), ~S->(T<->RvQ) |- S

1(1)P&(~Q&~R) A
2(2)P->(~S->T)A
3(3)~S->(T<->RvQ) A
4(4)~SA
3,4(5)T<->RvQ3,4 ->E
1(6)~Q&~R1 &E
1(7)~R&~Q6 &Comm
1(8) ~(RvQ)7 DM
1,3,4(9)~T5,8 BT
1(10) P1 &E
1,2(11)~S->T2,10 ->E
1,2,4(12)T4,11 ->E
1,2,3(13)S9,12 RAA (4)

S75: P&~Q->~R, (~S->~P)<->~R |- R<->Q&(P&~S)

1(1)P&~Q->~R A
2(2)(~S->~P)<->~RA
3(3)RA
1,3(4)~(P&~Q)1,3 MTT
2,3(5)~(~S->~P)2,3 BT
2,3(6) ~S&P5 Neg->
1,3(7)~PvQ4 DM
2,3(8) P6 &E
1,2,3(9)Q7,8 vE
2,3(10) P&~S6 & Comm
1,2,3(11)Q&(P&~S) 9,10 &I
1,2(12)R->Q&(P&~S)11 ->I (3)
13(13)Q&(P&~S)A
13(14)P&~S 13 &E
13(15)~S&P14 & Comm
13(16)~(~S->~P)15 Neg->
2,13(17)R2,16 BT
2(18) Q&(P&~S)->R17 ->I (13)
1,2(19)R<->Q&(P&~S) 12,18 <->I

S77: P->QvR, (~Q&S)v(T->~P), ~(~R->~P) |- ~T&Q

1(1)P->QvR A
2(2)(~Q&S)v(T->~P)A
3(3)~(~R->~P)A
3(4)~R&P3 Neg->
3(5)~R4 &E
3(6) P4 &E
1,3(7)QvR1,6 ->E
1,3(8)Q5,7 vE
1,3(9)Qv~S8 vI
1,3(10) ~(~Q&S)9 DM
1,2,3(11)T->~P2,10 vE
1,2,3(12)~T6,11 MTT
1,2,3(13)~T&Q 8,12 &I

S86: ~(P&~Q)v~(~R&~S), ~S&~Q, T->(~S->~R&P) |- ~T

1(1) ~(P&~Q)v~(~R&~S)A
2 (2)~S&~QA
3(3)T->(~S->~R&P) A
4(4)TA
3,4(5)~S->~R&P3,4 ->E
2(6)~S2 &E
2,3,4 (7)~R&P5,6 ->E
2,3,4(8)~R7 &E
2,3,4(9)~R&~S6,8 &I
1,2,3,4(10)~(P&~Q) 1,9 vE
1,2,3,4(11)~PvQ10 DM
2(12)~Q2 &E
1,2,3,4(13)~P11,12 vE
2,3,4(14)P7 &E
1,2,3(15)~T13,14 RAA (4)