Name (5 points): \qquad Section (5 points): \qquad

Section I True / False questions (2 points each)

1. ___TRUE__ Any argument that is sound is also valid.
2. ___FALSE_If the premises of an argument are all true, then that argument is sound.
3. __TRUE__ Every universal wff contains at least one variable.
4. __TRUE__ Every negation is a denial.
5. ___FALSE_ If the conclusion of a valid argument is false, then its premises must all be false.
6. __ FALSE_Every WFF contains at least one connective..
7. __FALSE_ Every WFF of predicate logic contains at least one quantifier.
8. ___ FALSE_ Some conditionals are negations.
9. ___ FALSE_ Every argument has at least two premises.
10. ___FALSE_ Every WFF that starts with the symbol $\forall \mathrm{x}$ is an existential.

Section II Mark the correct completion (5 points each)

1. The conclusion of a valid argument ...
(a) \qquad must be false if the premises are all false.
(b) \qquad must be true if the premises are all true.
(c) \qquad must be false if all the premises are true.
(d) \qquad must be true if all the premises are false.
(e) \qquad must be true if it is also false.
2. The following is NOT a condition on the application of $\exists \mathrm{E} . .$.
(a) $_$X__ the instantial name must occur in the line which is repeated.
(b) \qquad the instantial name cannot occur in the line containing the sentence which is repeated.
(c) \qquad the instantial name cannot occur in the line that motivates the assumption to be discharged.
(d) \qquad the instantial name cannot occur in the assumption set of the line containing the sentence which is repeated save for the assumption itself.

Name (5 points): \qquad Section (5 points): \qquad
3. A finite interpretation may contain all but ...
(a) \qquad a universe
(b) ____ predicate extensions
(c) \qquad truth value specifications
(d) _X__ a galaxy

Section III Translations (5 points each)

Using the following translation scheme, construct a strictly correct translations that includes all parentheses.

$$
\begin{array}{ll}
\mathrm{Bx}=' \mathrm{x} \text { is a book' } & H \mathrm{x}=\text { ' } \mathrm{x} \text { is a hardback' } \\
\mathrm{Px}=\text { ' } \mathrm{x} \text { is a paperback' } & \\
\mathrm{P}=\text { Peter Dances } & Q=\text { Jane Dances }
\end{array}
$$

1) Peter dances if and only if Jane Dances.

$$
(\mathrm{P} \leftrightarrow \mathrm{Q})
$$

2) All books are paperbacks.

$$
\forall \mathrm{x}(\mathrm{Bx} \rightarrow \mathrm{Px})
$$

3) All books are either paperback or hardback.

$$
\forall \mathrm{x}(\mathrm{Bx} \rightarrow(\mathrm{Px} \vee \mathrm{Hx}))
$$

Name (5 points): \qquad Section (5 points): \qquad

Section IV Proofs (5 points each)

Give a proof for each of the following sequents. You may use both primitive and derived rules.

1. $\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}), \forall \mathrm{x}(\mathrm{Gx} \rightarrow \mathrm{Hx}), \forall \mathrm{xFx} \vDash \exists \mathrm{xHx}$
$1 \quad$ (1) $\quad \forall x(\mathrm{Fx} \rightarrow \mathrm{Gx}) \quad \mathrm{A}$
$2 \quad$ (2) $\quad \forall \mathrm{x}(\mathrm{Gx} \rightarrow \mathrm{Hx}) \quad \mathrm{A}$
3 (3) $\forall x F x \quad$ A
$1 \quad(4) \quad(\mathrm{Fa} \rightarrow \mathrm{Ga}) \quad 1 \forall \mathrm{E}$
3 (5) Fa $3 \forall \mathrm{E}$
$1,3 \quad$ (6) $\mathrm{Ga} \quad 4,5 \rightarrow \mathrm{E}$
$2 \quad(7) \quad(\mathrm{Ga} \rightarrow \mathrm{Ha}) \quad 2 \forall \mathrm{E}$
1,2,3 (8) $\mathrm{Ha} \quad 6,7 \rightarrow \mathrm{E}$
$1,2,3$ (9) $\exists \mathrm{xHx} \quad 8 \exists \mathrm{I}$
2. $\quad(\mathrm{P} \rightarrow \mathrm{R}),(\sim \mathrm{R} \vee \mathrm{Q}),(\mathrm{Q} \rightarrow \mathrm{S}) \vdash(\mathrm{P} \rightarrow \mathrm{S})$

1	(1)	$(\mathrm{P} \rightarrow \mathrm{R})$	A
2	(2)	$(\sim \mathrm{R} \vee \mathrm{Q})$	A
3	(3)	$(\mathrm{Q} \rightarrow \mathrm{S})$	A
4	(4)	P	$\mathrm{A}($ for $\rightarrow \mathrm{I})$
1,4	(5)	R	$1,4 \rightarrow \mathrm{E}$
$1,2,4$	(6)	Q	$2,5 \mathrm{vE}$
$1,2,3,4$	(7)	S	$3,6 \rightarrow \mathrm{E}$
$1,2,3$	(8)	$(\mathrm{P} \rightarrow \mathrm{S})$	$7 \rightarrow \mathrm{I}(4)$

Name (5 points): \qquad Section (5 points): \qquad
3. $\forall \mathrm{x}(\mathrm{Dx} \rightarrow \mathrm{Ax}), \forall \mathrm{x}(\mathrm{Ax} \rightarrow \mathrm{Cx}), \exists \mathrm{xDx} \vDash \exists \mathrm{xCx}$

1	(1)	$\forall \mathrm{x}(\mathrm{Dx} \rightarrow \mathrm{Ax})$	A
2	(2)	$\forall \mathrm{x}(\mathrm{Ax} \rightarrow \mathrm{Cx})$	A
3	(3)	$\exists \mathrm{xDx}$	A
4	(4)	Da	$\mathrm{A}($ for $\exists \mathrm{E}$ on 3$)$
1	(5)	$(\mathrm{Da} \rightarrow \mathrm{Aa})$	$1 \forall \mathrm{E}$
1,4	(6)	Aa	$4,5 \rightarrow \mathrm{E}$
2	(7)	$(\mathrm{Aa} \rightarrow \mathrm{Ca})$	$2 \forall \mathrm{E}$
$1,2,4$	(8)	Ca	$6,7 \rightarrow \mathrm{E}$
$1,2,4$	(9)	$\exists \mathrm{xCx}$	$8 \exists \mathrm{I}$
$1,2,3$	(10)	$\exists \mathrm{xCx}$	$3,9 \exists \mathrm{E}(4)$

Name (5 points): \qquad Section (5 points): \qquad
Section V Truth Tables (5 points each)
Using the truth table method, with either a full truth table or an indirect truth table, determine whether or not the following sequent is valid. If it is valid, state that it is valid. If it is invalid, provide an invalidating assignment.

$$
\sim(\sim \mathrm{P} \vee \mathrm{Q}) \vdash(\mathrm{P} \leftrightarrow \sim \mathrm{Q})
$$

\mathbf{P}	\mathbf{Q}	\sim	$($	\sim	\mathbf{P}	\mathbf{v}	\mathbf{Q}	$)$	-	$($	\mathbf{P}	\leftrightarrow	\sim	\mathbf{Q}	$)$
T	T	F		F		T						F	F		
T	F	T		F		F						T	T		
F	T	F		T		T						T	F		
F	F	F		T		T						F	T		

Valid

Section VI Finite Interpretations (2 points each)

For each of the sentences below, indicate whether it is true or false in this finite interpretation:
$\mathrm{U}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
F: $\{a\}$
G: $\{a, b, c\}$
$\mathrm{L}:\{\langle\mathrm{a}, \mathrm{a}\rangle,\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{c}, \mathrm{a}\rangle\}$

1. FALSE $\quad \exists x \forall y L x y$
2. TRUE $\quad \exists x(F x \& G x)$
3. FALSE $\quad(\exists x G x \rightarrow \forall x F x)$
4. TRUE $\exists x L x x$
5. TRUE $\quad \forall x G x$

Name (5 points): \qquad Section (5 points): \qquad

Section VII Probability (2 points each)

For each of the questions below, assume fair coin (Heads/Tails), fair dice (six sides numbered 1-6), and fair standard deck of cards.

1. What is the probability of getting heads on three successive flips of a coin?

$$
\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}
$$

2. What is the probability of not getting a 4 on a single roll of a 6 -sided die?

$$
1-\frac{1}{6}=\frac{5}{6}
$$

3. What is the probability of drawing, on a single draw from a standard deck of cards, either a queen or a heart?

$$
\left(\frac{4}{52}+\frac{13}{52}\right)-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}
$$

4. What is the probability of drawing, on a single draw from a standard deck of cards, either a jack or a king?

$$
\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}
$$

5. What is the probability of drawing two spades, on two successive draws from a standard deck of cards, if no cards are replaced?

$$
\frac{13}{52} \times \frac{12}{51}=\frac{156}{2652}=\frac{13}{221}
$$

