Name (5 points): \qquad Section (5 points): \qquad

Section I True / False questions (5 points each)

1. \qquad Only universal and existential WFFs have instances.
2. \qquad A WFF in predicate logic may contain a free variable.
3. \qquad If a WFF begins with the symbols " $\forall \mathrm{x}$ ", then it must be an existential.
4. \qquad All valid arguments have a countermodel.

Section II Mark the correct completion (5 points each)

1. The condition on $\forall \mathrm{I}$ requires that ..
(a) \qquad the instantial name must occur in at least one of the sentences in the assumption of the line to which one applies the rule.
(b) \qquad there is no condition on the application of $\forall \mathrm{I}$.
(c) \qquad the instantial name cannot occur in any sentence in the assumption set of the line to which one applies the rule.
(d) \qquad a free variable must be used in place of an instantial name.
(e) \qquad the instantial name be used in the sentence which results from the application of the rule.
2. The sentence $\forall x(F x \rightarrow \sim(\exists y G y \& R))$ is a ...
(a) \qquad existential
(b) \qquad conditional
(c) \qquad negation
(d) \qquad universal
(e) \qquad conjunction

Name (5 points): \qquad Section (5 points): \qquad
3. The following is NOT a condition on the application of $\exists \mathrm{E} \ldots$
(a) \qquad the instantial name cannot occur in the line that motivates the assumption to be discharged.
(b) \qquad the instantial name cannot occur in the line containing the sentence which is repeated.
(c) \qquad the instantial name must occur in the line which is repeated.
(d) \qquad the instantial name cannot occur in the assumption set of the line containing the sentence which is repeated save for the assumption itself.
4. A finite interpretation may contain all but ...
(a) \qquad a universe
(b) \qquad predicate extensions
(c) \qquad truth value specifications
(d) \qquad a proof

Section III Translations (5 points each)

Using the following translation scheme, construct a strictly correct translations that includes all parentheses.

$$
\begin{array}{ll}
\mathrm{Bx}=\text { ' } \mathrm{x} \text { is a book' } & \mathrm{Hx}=\text { ' } \mathrm{x} \text { is a hardback' } \\
\text { Px }=\text { ' } \mathrm{x} \text { is a paperback' } & \mathrm{Ex}=\text { ' } \mathrm{x} \text { exists' } \\
\text { Lxy }=\text { ' } x \text { is longer than } y ' & \\
\mathrm{a}=\text { Logic Primer } & \mathrm{b}=\text { 'Crime and Punishment' }
\end{array}
$$

1) Among books, only paperback and hardback exist.

Name (5 points): \qquad Section (5 points): \qquad
2) All books are paperbacks.
3) Crime and Punishment is longer than the Logic Primer, only if Crime and Punishment is a hardback.
4) Not all books are hardback if paperbacks exist.

Section IV Proofs (8 points each)

Give a proof for each of the following sequents. You may use both primitive and derived rules.

1. $\quad \forall \mathrm{x}(\mathrm{Fx} \vee \mathrm{Gx}), \forall \mathrm{x}(\mathrm{Gx} \rightarrow \mathrm{Hx}), \exists \mathrm{x} \sim \mathrm{Fx} \mid \exists \mathrm{xHx}$

Name (5 points): \qquad Section (5 points): \qquad
2. $\quad \forall \mathrm{x}(\mathrm{Px} \rightarrow(\mathrm{Qx} \& R \mathrm{R})), \exists \mathrm{xPx} \rightarrow \forall \mathrm{x} \sim \mathrm{Rx}$ ト $\sim \exists \mathrm{xPx}$

Name (5 points): \qquad Section (5 points): \qquad
Section V Finite Interpretations (2 points each)
For each of the sentences below, indicate whether it is true or false in this finite interpretation:
$\mathrm{U}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
F: $\{\mathrm{a}\}$
G: $\{a, b, c\}$
$\mathrm{H}:\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{b}, \mathrm{b}\rangle\}$

1. \qquad $(\mathrm{Hba} \rightarrow \sim \mathrm{Gb})$
2. \qquad $\exists x($ Fx\& ~ Gx)
3. \qquad $(\forall \mathrm{xGx} \rightarrow \forall \mathrm{xFx})$
4. \qquad $\sim \exists \mathrm{xHxx}$

Section VI Finite Countermodels (6 points)

Construct a counter-model for the following sequent. Be sure to show your work.
$\exists \mathrm{x}(\mathrm{Px} \& R \mathrm{R}), \exists \mathrm{x}(\mathrm{Sx} \& R \mathrm{R}) \mid-\exists \mathrm{x}(\mathrm{Px} \& \mathrm{Sx})$

