Name (5 points):	Section (5 points):
------------------	----------------------------

Section I True / False questions (5 points each)

- 1. _____ Only universal and existential WFFs have instances.
- 2. _____ A WFF in predicate logic may contain a free variable.
- 3. _____ If a WFF begins with the symbols " $\forall x$ ", then it must be an existential.
- 4. _____ All valid arguments have a countermodel.

Section II Mark the correct completion (5 points each)

- 1. The condition on \forall I requires that ...
 - (a) _____ the instantial name must occur in at least one of the sentences in the assumption of the line to which one applies the rule.
 - (b) _____ there is no condition on the application of $\forall I$.
 - (c) _____ the instantial name cannot occur in any sentence in the assumption set of the line to which one applies the rule.
 - (d) _____ a free variable must be used in place of an instantial name.
 - (e) _____ the instantial name be used in the sentence which results from the application of the rule.
- 2. The sentence $\forall x(Fx \rightarrow \sim (\exists yGy \& R))$ is a ...
 - (a) _____ existential
 - (b) _____ conditional
 - (c) _____ negation
 - (d) _____ universal
 - (e) _____ conjunction

 Name (5 points):
 Section (5 points):

- 3. The following is NOT a condition on the application of $\exists E \dots$
 - (a) _____ the instantial name cannot occur in the line that motivates the assumption to be discharged.
 - (b) _____ the instantial name cannot occur in the line containing the sentence which is repeated.
 - (c) _____ the instantial name must occur in the line which is repeated.
 - (d) _____ the instantial name cannot occur in the assumption set of the line containing the sentence which is repeated save for the assumption itself.
- 4. A finite interpretation may contain all but ...
 - (a) _____ a universe
 - (b) _____ predicate extensions
 - (c) _____ truth value specifications
 - (d) _____ a proof

Section III Translations (5 points each)

Using the following translation scheme, construct a strictly correct translations that includes all parentheses.

Bx = x is a book'	Hx = 'x is a hardback'
Px = 'x is a paperback'	Ex = 'x exists'
Lxy = 'x is longer than y'	
a = Logic Primer	b = 'Crime and Punishment'

1) Among books, only paperback and hardback exist.

Name (5 points):	Section (5 points):
------------------	---------------------

- 2) All books are paperbacks.
- 3) Crime and Punishment is longer than the Logic Primer, only if Crime and Punishment is a hardback.
- 4) Not all books are hardback if paperbacks exist.
- Section IV Proofs (8 points each)

Give a proof for each of the following sequents. You may use both primitive and derived rules.

1. $\forall x(Fx v Gx), \forall x(Gx \rightarrow Hx), \exists x \sim Fx \models \exists xHx$

Name (5 points):	Section (5 points):
------------------	---------------------

2. $\forall x(Px \rightarrow (Qx \& Rx)), \exists xPx \rightarrow \forall x \sim Rx \models \neg \exists xPx$

 Name (5 points):
 Section (5 points):

 Section V
 Finite Interpretations (2 points each)

For each of the sentences below, indicate whether it is true or false in this finite interpretation:

U: {a, b, c} F: {a} G: {a, b, c} H: {<a,b>, <b,b>} 1. _____ (Hba $\rightarrow \sim$ Gb) 2. _____ $\exists x(Fx\& \sim Gx)$ 3. ____ ($\forall xGx \rightarrow \forall xFx$) 4. ____ $\sim \exists xHxx$

Section VI Finite Countermodels (6 points)

Construct a counter-model for the following sequent. Be sure to show your work.

 $\exists x(Px \& Rx), \exists x(Sx \& Rx) \mid \exists x(Px \& Sx)$