Name (5 points):		Section (5 points):
Sectio	n I T	rue / False questions (5 points each)
1.	TRUE	Only universal and existential WFFs have instances.
2.	FALSE	A WFF in predicate logic may contain a free variable.
3.	FALSE	If a WFF begins with the symbols " $\forall x$ ", then it must be an existential.
4.	<u>FALSE</u>	All valid arguments have a countermodel.
Sectio	n II M	Tark the correct completion (5 points each)
1.	The cond	ition on ∀I requires that
	(a)	the instantial name must occur in at least one of the sentences in the assumption of the line to which one applies the rule.
	(b)	there is no condition on the application of $\forall I$.
	(c) <u>X</u>	the instantial name cannot occur in any sentence in the assumption set of the line to which one applies the rule.
	(d)	a free variable must be used in place of an instantial name.
	(e)	the instantial name be used in the sentence which results from the application of the rule.
2.	The sente	nce $\forall x(Fx \rightarrow \sim (\exists yGy \& R))$ is a
	(a)	_ existential
	(b)	_ conditional
	(c)	_ negation
	(d) <u>X</u>	_ universal
	(e)	conjunction

EXAM 2: Practice

Name	(5 points): _	Section (5 points):	
3.	The following	ing is NOT a condition on the application of $\exists E \dots$	
		he instantial name cannot occur in the line that motivates the assumption to be discharged.	
		he instantial name cannot occur in the line containing the sentence which is repeated.	
	(c) <u>X</u>	the instantial name must occur in the line which is repeated.	
	C	he instantial name cannot occur in the assumption set of the line containing the sentence which is repeated save for the assumption tself.	
4.	A finite interpretation may contain all but		
	(a) a	universe	
	(b) p	predicate extensions	
	(c) t	ruth value specifications	
	(d) <u>X</u>	a proof	

Section III Translations (5 points each)

Using the following translation scheme, construct a strictly correct translations that includes all parentheses.

1) Among books, only paperback and hardback exist.

$$\forall x(Bx \rightarrow (Ex \rightarrow (Hx \lor Px)))$$

Name (5 points): ______ Section (5 points): _____

2) All books are paperbacks.

$$\forall x(Bx \rightarrow Px)$$

3) Crime and Punishment is longer than the Logic Primer, only if Crime and Punishment is a hardback.

$$(Lba \rightarrow Hb)$$

4) Not all books are hardback if paperbacks exist.

$$(\exists x (Px \& Ex) \rightarrow \neg \forall x (Bx \rightarrow Hx))$$

Section IV Proofs (8 points each)

Give a proof for each of the following sequents. You may use both primitive and derived rules.

1. $\forall x(Fx \ v \ Gx), \ \forall x(Gx \rightarrow Hx), \ \exists x \sim Fx \ \mid \exists x Hx$

1	(1)	$\forall x (Fx \ v \ Gx)$	A	
2	(2)	$\forall x(Gx \rightarrow Hx)$	A	
3	(3)	∃x~Fx	A	−∃xHx
4	(4)	~Fa	A (for $\exists E \text{ on } 3$)	
1	(5)	(Fa v Ga)	1 ∀E	
1,4	(6)	Ga	4, 5 vE	
2	(7)	$(Ga \rightarrow Ha)$	2 ∀E	
1,2,4	(8)	Ha	$6, 7 \rightarrow E$	
1,2,4	(9)	$\exists x Hx$	8 ∃I	
1,2,3	(10)	$\exists x Hx$	3,9 ∃E(4)	

Name (5 points): ______ Section (5 points): _____

2. $\forall x (Px \rightarrow (Qx \& Rx)), \exists x Px \rightarrow \forall x \sim Rx \mid \neg \exists x Px$

1	(1)	$\forall x (Px \rightarrow (Qx \& Rx))$	A
2	(2)	$\exists x Px \rightarrow \forall x \sim Rx$	A $- \sim \exists x Px$
3	(3)	$\exists x Px$	A (for RAA)
2,3	(4)	∀x~Rx	$2,3 \rightarrow E$
5	(5)	Pa	A (for \exists E on 3)
1	(6)	$(Pa \rightarrow (Qa \& Ra))$	1 ∀E
1,5	(7)	(Qa & Ra)	$5, 6 \rightarrow E$
1,5	(8)	Ra	7 &E
2,3	(9)	~Ra	4 ∀E
1,2,5	(10)	~∃xPx	8, 9 RAA (3)
1,2,3	(11)	~∃xPx	$3, 10 \exists E (5)$
1,2	(12)	~∃xPx	3, 11 RAA (3)

Name (5 points): _____ Section (5 points): _____ Section V Finite Interpretations (2 points each)

For each of the sentences below, indicate whether it is true or false in this finite interpretation:

```
U: \{a, b, c\}

F: \{a\}

G: \{a, b, c\}

H: \{\langle a,b\rangle, \langle b,b\rangle\}

1. __TRUE (Hba \rightarrow \sim Gb)

2. _FALSE \exists x(Fx\& \sim Gx)

3. _FALSE (\forall xGx \rightarrow \forall xFx)

4. _FALSE \sim \exists xHxx
```

Section VI Finite Countermodels (6 points)

Construct a counter-model for the following sequent. Be sure to show your work.

$$\exists x (Px \& Rx), \exists x (Sx \& Rx) \vdash \exists x (Px \& Sx)$$

$$U = \{a,b\}$$

$$P = \{b\}$$

$$R = \{a,b\}$$

$$S = \{a\}$$