Translation

- Now that we have the elements of a formal language, we need to map them onto a natural language, such as English, so that we can use the formal language to do what it was designed to do, represent the underlying structure of real arguments.

Translation Scheme

- The first part of translating English sentences in to our formal language involves construction of a translation scheme, i.e. a pairing of sentence letters with sentences in the natural language.
- Make sure that the natural language sentences you pair with sentence letters are logically simple, i.e. they don't contain any of the words corresponding to any of our sentential connectives ($\sim, \&, \vee, \rightarrow, \leftrightarrow)$

Negations

- If we let B translate the sentence "Bob is happy," \qquad then a few stylistic variants of the logical form $\sim B$ would include:
- Bob is not happy.
- Bob is unhappy.
- It is not true that Bob is happy.
- It is not the case that Bob is happy. \qquad
- It is false that Bob is happy.
- Bob fails to be happy.

Conjunctions

- If we let D translate the sentence "Descartes was a rationalist," and L translate the sentence "Locke was an empiricist," then a few stylistic variants of the logical form (D \& L) would include:
- Descartes was a rationalist and Locke was an empiricist.
- Descartes was a rationalist, but Locke was an empiricist.
- Descartes was a rationalist; however, Locke was an empiricist.
- While Descartes was a rationalist, Locke was an empiricist.
- Although Descartes was a rationalist, Locke was an empiricist.
- Descartes was a rationalist, yet Locke was an empiricist.
- Descartes was a rationalist; nevertheless, Locke was an empiricist
- Descartes was a rationalist even though Locke was an empiricist.
- Descartes was a rationalist though Locke was an empiricist.
- Descartes was a rationalist; also Locke was an empiricist

Disjunctions

\qquad

- Remember that the way we have defined the V is such that it's use is inclusive! So, if we were to let C translate the sentence "Carol attends college, and J translate the sentence "Carol gets a job," then the following are a few stylistic variants of the logical form ($\mathrm{C} \vee \mathrm{J}$):
- Carol attends college and/or she gets a job.
- Carol attends college or she gets a job.
- Either Carol attends college or she gets a job.
- Carol attends college unless she gets a job.*
*_"Unless" is usually translated as "if not." Thus, in the fourth example above, we could equally translate the compound sentence as : $(\sim \mathrm{J} \rightarrow \mathrm{C})$.

Conditionals

\qquad

- If we let R translate the sentence "It rains," and C translate the sentence there are clouds in the sky," then some common stylistic variants of the logical form ($\mathrm{R} \rightarrow \mathrm{C}$) are:
- If it rains, there are clouds in the sky.
- If it rains, then there are clouds in the sky.
- There are clouds in the sky, if it rains.
- Given that it rains, there are clouds in the sky.
- There are clouds in the sky, given that it rains.
- Assuming that it rains, there are clouds in the sky.
- There are clouds in the sky, provided that it rains.
- On the condition that it rains, there are clouds in the sky.
- It raining is a sufficient condition that there are clouds in the sky
- Clouds in the sky are a necessary condition for it raining.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Biconditionals

- If we let N translate the sentence "Norm is a bachelor,", and M translate the sentence "Norm is an unmarried male," then some common stylistic variants of the logical form (N $\leftrightarrow \mathrm{M}$) are:
- Norm is a bachelor if and only if he is an unmarried male.
- Norm is a bachelor is equivalent to Norm is an unmarried male.
- Norm is a bachelor just in case he is an unmarried male.
- Norm is an unmarried male, which is both sufficient and necessary to his being a bachelor.

