
Arguments and Proofs
For the next section of this course, we will study PROOFS. A
proof can be thought of as the formal representation of a process
of reasoning. Proofs are comparable to arguments, since they
can be seen as having premises and conclusions. That is only
part of the story, however.

Let’s begin by returning to the definition of an argument. An ar-

gument is two things:

1. A set of sentences (the premises)

2. A sentence (the conclusion)
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Arguments Made of WFFs

Our language for sentential logic also contains sen-
tences, so this definition can be applied to it. A sen-
tence in the formal language is a well-formed for-
mula (wff). So, we can also say that an argument
in sentential logic is:

1. A set of wffs. (the premises)

2. A wff. (the conclusion)

An example would be:

Premises: (P∨ ∼ S)
∼(Q↔ (R&S))
(P → (Q&R))

Conclusion: (Q ∨ (P ↔ ∼R))
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Sequents and Arguments

For convenience, and just because it’s what we want
to do, we will write arguments in another way, and
when we do that we will call them by another name:
SEQUENTS. A sequent is just an argument written
on one line, with the premises first (separated by com-
mas) and the conclusion last (separated from the premises
by the symbol ‘⊢’). So, the argument on the previous
page, written as a sequent, looks like this:

(P ∨ ∼ S),∼(Q↔ (R&S)), (P → (Q&R)) ⊢ (Q ∨ (P ↔ ∼R))

The symbol ‘⊢’ is called the TURNSTILE.
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A Small Confession

In general, I have not required that you learn the de-
tails of the parenthesis-dropping convention. How-
ever, in these notes the outside pair of parentheses
for wffs will often be dropped. That is, you will find
such forms as P → ∼ (Q&R) instead of the strictly
correct (P → ∼(Q&R)).
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Valid Arguments and Reasoning

An argument is a set of premises and a conclusion.
If the premises and conclusion are related in such a
way that it’s impossible for the conclusion to be false
if the premises are all true, then we call it valid. How
do we tell if an argument is valid?

One way, and one that we often use, is to see if we can
reason deductively from the premises to the conclu-
sion. It’s best to explain this with an example. Con-
sider the following argument:

P1 My kitchen is ten feet long and
twelve feet wide.

P2 George’s kitchen is eight feet
long and fourteen feet wide.

C Therefore, my kitchen is bigger
than George’s kitchen.
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Why is it valid? You might defend this by reasoning as
follows:

P1 My kitchen is ten feet long and twelve feet wide.
P2 George’s kitchen is eight feet long and fourteen

feet wide.
R3 If my kitchen is ten feet long and twelve feet wide,

then its area is one hundred twenty square feet
R4 So, the area of my kitchen is one hundred twenty

square feet
R5 If George’s kitchen is eight feet long and four-

teen feet wide, then its area is one hundred twelve
square feet

R6 So, the area of George’s kitchen is one hundred
twelve square feet

R7 One hundred twenty square feet is a larger area
than one hundred twelve square feet

C Therefore, my kitchen is bigger than George’s
kitchen.

The additional sentences in red are a series of steps
that start with the premises of the argument and even-
tually reach the conclusion. Each step follows neces-
sarily from previous steps, and the last step is the con-
clusion. Therefore, these additional sentences show
that this argument is valid. Let’s call these interme-
diate steps REASONING.
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Reasoning and Proof

A proof is like an argument with reasoning added to
show that it is valid. However, proofs are in the for-
mal language of sentental logic, not English. We use
proofs to model the process of reasoning.

In the example of reasoning above, I didn’t explain
how we know that the reasoning actually does show
that the argument is valid. Instead, I just relied on “in-
tuition”: it seems obvious that this reasoning works.
But what makes it seem obvious?

One of the purposes of logic is to give an answer to
that question. We will give a precise definition of a
proof in the language of sentential logic that corre-
sponds to the intuitive idea of a valid argument with
reasoning added to show that it is valid.

Just as we defined the sentences of sentential logic
exactly with a list of basic vocabulary and a set of
rules, we’ll also define a proof using a precise set of
rules. These rules will be easier to understand if we
start by looking at a proof.
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A Proof

Here is a proof of the sequent P → Q,Q → R ⊢

P → R:

1 (1) P → Q A
2 (2) Q→ R A
3 (3) P A

1,3 (4) Q 1,3 →E
1,2,3 (5) R 2,4 →E

1,2 (6) P → R 5 →I (3)

Notice that this proof is made up of lines. Each line
has a certain structure. It begins with one or more
numbers, separated by commas. After that, there is
a number in parentheses. Next comes a wff. Finally,
at the right side of the line, there is a mysterious and
very short string. Each of these parts has a name:

Assumption set
︷ ︸︸ ︷

1,2,3

Line no.
︷︸︸︷

(5)

Sentence
︷︸︸︷

R

Annotation
︷ ︸︸ ︷

2,4 → E
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Each of these different parts has a function:

Assumption set: The line numbers of all the lines
on which this line depends.

Line number: Which line this is (lines are num-
bered in order, starting with one).

Sentence: The contents of this line.

Annotation: The rule that allows us to add the
sentence, and the number(s) of the line(s) we ap-
plied that rule to.

Whenever we add a line to a proof, we add a sen-
tence by applying a rule to previous lines. The as-
sumption set we put at the front of the line is deter-
mined by the assumption set(s) of the line(s) we used
and the particular rule we used.
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Primitive Rules of Proof

There are ten basic rules of proof which we call prim-
itive rules because they are the fundamental rules in
terms of which proofs are defined. (Later on, we’ll see
how we can add more rules to the system.) These
include:

1. The assumption rule (the simplest of them all)

2. For each of the connectives &,∨,→,↔, two rules:
an intro rule and an elim rule.

3. The rule called reductio ad absurdum
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Assumption

assumption Assume any sentence

This is the simplest rule of all, and it is also the rule
with which a proof usually starts. You may assume
any sentence you like, no restrictions. This can cor-
respond to taking something as a premise in an argu-
ment, but there are also cases where you will want to
make assumptions for other purposes.

When you add a line using assumption, you give it an
assumption set containing just its own line num-
ber. An assumption doesn’t depend on anything else,
but other things may depend on it.

When you add a line using assumption, you add an
annotation consisting simply of the letter A.
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Ampersand-Intro (&I)

ampersand-
intro

Given two sentences (at lines m
and n, conclude a conjunction of
them.

What this rule permits you to do is add a conjunction,
that is, add a sentence with & as its main connective.
The two lines can be any previous lines of the proof.

. . . .
1,2,3 (m) φ

. . .
2,4 (n) ψ

1,2,3,4 (k ) (φ&ψ) m,n&I

The assumption set for the line we add includes all the
numbers that are in either of the lines we used. Notice
that we include each number only once. (By the way,
the numbers in this example are just made up.)
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A Closer Look at Annotations

The annotation for &I has certain form:

. . . .
1,2,3 (m) φ

. . .
2,4 (n) ψ

1,2,3,4 (k ) (φ&ψ) m,n &I
line numbers Rule name

The annotation begins with the numbers (or num-
ber) of the lines (or line) to which the rule was ap-
plied, separated by a comma (if there is more than
one number). Following that is the name of the rule.
We will see this same structure for the annotations in
several rules: &E, ∨I, ∨E, →E, ↔I, and ↔E. Some of
these rules apply to two lines at a time: &I, ∨E, →E,
↔I, ↔E. The rest apply to only one line: &E, ∨I.
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A closer Look at Assumption Sets

Every rule specifies how to determine the assump-
tion set for the line it adds, based on the assumptions
set(s) of the line(s) it is applied to. Getting this part
right is critical. In the case of &E, the assumption
set is the union of the assumption sets of the lines to
which the rule is applied. ‘Union’ is a term from set
theory: the union of two sets is the set of all the things
that are in either of them. In other words, the assump-
tion set here contains all the numbers that are in
either of the assumption sets of the lines that the
rule applies to:

. . . .
1,2,3 (m) φ

. . .
2,4 (n) ψ

1,2,3,4 (k ) (φ&ψ) m,n &I
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Ampersand-Elim (&E)

ampersand-
elim

Given a sentence that is a con-
junction (at line m), conclude ei-
ther conjunct.

What this rule permits you to do is get either part of
a conjunction, that is, add either the left or the right
conjunct of a conjuction as a line.

. . . .
2,4 (m) (φ&ψ)
. . .
2,4 (k ) φ m&E

We could equally well have added ψ.

The assumption set here is the same as the assump-
tion set in front of the line containing the conjunction
we used.
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Wedge-Intro (∨I)

wedge-intro Given a sentence (at line m),
conclude any sentence having it
as a disjunct.

What this rule permits you to do is take any line you
like and add a line that contains the sentence you
get by combining that line with any other sentence
whatsoever, using the wedge. The sentence you
combine it with can be anything: it doesn’t have to
occur already in the proof as a line.

. . . .
1,2,3 (m) φ

. . .
1,2,3 (k ) (φ ∨ ψ) m∨I

We could equally well have added (ψ ∨ψ). The sentence ψ can

be anything

The assumption set for the line we add is the same as
the assumption set for the line we used, that is, m.
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Wedge-Elim (∨E)

wedge-elim Given a sentence (at line m) that
is a disjunction and another sen-
tence (at line n) that is a denial of
one of its disjuncts, conclude the
other disjunct.

What this rule permits you to do is get one of the
disjuncts of a disjunction. For the definition of a
denial, see p. 7 of the text. Briefly, if there are two
sentences, one of which is the other sentence with a
∼ in front of it, then the two sentences are denials of
each other.

. . . .
1,2,3 (m) (φ ∨ ψ)
. . .
2,4 (n) ∼ φ

. . .
1,2,3,4 (k ) ψ m,n∨E

The assumption set here includes all the numbers on
either of the lines m or n.
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Arrow-Elim (→E)

arrow-elim Given a conditional sentence (at
line m) and another sentence
that is its antecedent (at line n),
conclude the consequent of the
conditional.

What this rule permits you to do is get the conse-
quent (right side) of a conditional. To apply it, you
need the conditional on one line and its antecedent
(left side) on the other. NOTE: there is no rule that
lets you get the antecedent from a conditional and
its consequent.

. . . .
1,2,3 (m) (φ→ ψ)
. . .
2,4 (n) φ

. . .
1,2,3,4 (k ) ψ m,n→E

The assumption set here includes all the numbers on
either of the lines m or n.
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Proofs

Before we go on to →I and RAA, which introduce a
new feature of rules, let’s pause to consider a proof
that uses many of the rules we’ve introduced. We can
start by defining PROOF precisely (see p. 17 of the
text):

A PROOF is a sequence of lines containing
sentences. Each sentence is either an as-
sumption or the result of applying a rule of
proof to earlier sentences in the sequence.

The meaning of this should now be clear. Notice that it
adds one important requirement: every proof starts
with one or more assumptions. (An assumption,
in a proof, is a line that was introduced by the rule
assumption).
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Proofs for Arguments

A PROOF FOR A GIVEN ARGUMENT is a
proof whose last sentence is the argument’s
conclusion depending on nothing other than
the argument’s premises.

To rephrase this, here is how we construct a proof for
a given argument:

1. Begin by adding all of the premises of the argu-
ment, each on one line, using the rule assumption.

2. Add more lines to the proof, using the rules, until
you reach a line containing the conclusion of the
argument.

3. If the assumption set of the line containing the
conclusion includes only the numbers of lines con-
taining premises of the argument, then then entire
proof is a proof of the given argument.
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Working through an example will help. Here is an ar-
gument (sequent):

P& ∼Q, (P ∨ S) → (Q ∨R) ⊢ P&R

We start by assuming each of the premises:

1 (1) P& ∼Q A
2 (2) (P ∨ S) → (Q ∨R) A

Our goal in constructing a proof is then to add lines in
accordance with the rules until we arrive at a line that
meets two criteria:

1. Its sentence is the conclusion, P&R

2. Its assumption set includes only the assumption
numbers of the premises (1 and 2).
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What do we do next? We will disucss strategies for
completing proofs a little later, but for the present let’s
concentrate on what a proof is. Here are two steps to
get our proof started:

1 (1) P& ∼Q A
2 (2) (P ∨ S) → (Q ∨R) A
1 (3) P 1 &E
1 (4) P ∨ S 3 ∨I

The first step (line 3) was to add P by applying &E
to line 1. Next, we used ∨I to add P ∨ S as line 4. In
each case, the assumption set includes only 1 (why?).
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1 (1) P& ∼Q A
2 (2) (P ∨ S) → (Q ∨R) A
1 (3) P 1 &E
1 (4) P ∨ S 3 ∨I
1,2 (5) Q ∨R 2,4 →E
1 (6) ∼Q 1 &E

Next, we added line 5 using →E. Notice that the as-
sumption set includes the assumption sets from lines
2 and 4. We don’t put down 4 as part of the assump-
tion set (line 4 is not an assumption); instead, we in-
clude the assumption set of line 4.

Line 6 is exactly like line 3 except that here we added
the right conjunct of line 1, not the left one.
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1 (1) P& ∼Q A
2 (2) (P ∨ S) → (Q ∨R) A
1 (3) P 1 &E
1 (4) P ∨ S 3 ∨I
1,2 (5) Q ∨R 2,4 →E
1 (6) ∼Q 1 &E
1,2 (7) R 5,6 ∨E
1,2 (8) P&R 3,7 &I

LIne 7 applies ∨E to lines 5 and 6. Notice that the
sentence on line 6, ∼ Q, is the denial of one of the
disjuncts of line 5.

Line 8 applies &I to lines 3 and 7. Just to make a point
clear, notice that this is the second time we applied a
rule to line 3. You can apply rules to a line or lines as
often as you need to, in a proof: they don’t get used
up once you’ve used them.

Line 8 is the conclusion of the argument. Its assump-
tion set only includes the numbers of the premises of
the argument (1 and 2). Therefore, this is a proof of
the sequent in question.
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Rules for Biconditionals: ↔I and ↔E

Double-Arrow-Elim (↔E)

double-arrow-
elim

Given a biconditional sentence
(φ ↔ ψ) (at line m), conclude
either (φ → ψ) or (ψ → φ).

What this rule permits you to do is get a conditional
having one of the constitutents of a biconditional as
antecedent and the other as consequent.

. . . .
7,8 (m) (φ↔ ψ)
. . .
7,8 (k ) (φ→ ψ) m↔E

We could equally well have added ψ → φ.

The assumption set here is the same as the assump-
tion set in front of the line containing the biconditional
we used.
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Double-Arrow-Intro (↔I)

double-arrow-
intro

Given two conditionals having
the forms (φ → ψ) and (ψ → φ)

(at lines m and n), conclude a
biconditional with φ on one side
and ψ on the other.

What this rule permits you to do is get a conditional
having one of the constitutents of a biconditional as
antecedent and the other as consequent.

5 (m) (φ→ ψ)
. . .
7 (n) (ψ → φ)
. . .
5,7 (k ) (φ↔ ψ) m,n↔I

We could equally well have added (ψ ↔ φ).

The assumption set includes all the numbers in the
assumption sets for the two conditionals used.
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Assumption Rules: →I and RAA

There are two remaining rules, →I and RAA. These
two rules introduce a new feature: each of them dis-
charges an assumption. The critical point about these
rules is that an assumption number is dropped from
the assumption set on the line added by either of
these rules.

The rule assumption . Although we have used it up
to now for assuming the premises of an argument,
the rule itself is broader in scope: you can assume
anything you like at any time. Of course, if you use
that assumption to get other lines, then its assumption
number will be carried through to those lines. Con-
sequently, you cannot get a proof of a sequent just
by adding some extra premises to get the conclusion,
since you’ll have numbers in the assumption set that
don’t correspond to premises—.
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—except under certain circumstances. One way to
argue for a conditional conclusion is to assume its
antecedent and then see if you can deduce its con-
sequent. If you can, then what that shows is this: if
you assume the antecedent, then you get the conse-
quent. In other words, you have proved the conditional
If (the antecedent) then (the consequent).

Another strategy in argument is to assume the nega-
tion of what you want to prove and then try to get
an inconsistent pair of sentences using that assump-
tion. If you can, then what you’ve shown is this: If
(the assumption) were true, then something impossi-
ble would follow. Since impossible things can’t hap-
pen, the assumption must be false, and we can con-
clude its negation.

The rules →I and RAA represent these lines of rea-
soning formally.
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Arrow-Intro (→I)

arrow-intro Given an assumption (at line
m) and a sentence (at line n),
conclude the conditional having
the assumption as its antecedent
and the sentence as its conse-
quent.

What this rule permits you to do is get a conditional
if you have already got its consequent and have
assumed its antecedent. The antecedent must be
an assumption: it cannot be a line obtained using
any other rule.
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The assumption set here includes all the numbers on
n except for the line number of the assumption.
This last part of the rule is critical:

m (m) φ

. . .
1,3,m (n) ψ

↑ ↑ ↑ . .
1,3 (k ) φ→ ψ n→I (m)
↑ ↑

Getting the annotation and the assumption set right
here is crucial. Notice that we only cite one line, the
line n on which the consequent of the conditional is
found. However, we also cite the line number of the
antecedent after the rule, and in parentheses.
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An example will show how this works.

Sequent: S →P, P →Q ⊢ S →Q

Proof:

1 (1) S →P A
2 (2) P →Q A
3 (3) S A
1,3 (4) P 1,3 →E
1,2,3 (5) Q 2,4 →E
1,2 (6) S →Q 5 →I (3)

Notice three things: (1) line 3 is an assumption; (2)
the line number of line 3 does not appear in the as-
sumption set of line 6; (3) in the annotation for line 6,
the line number of line 3 is placed after the name of
the rule, in parentheses.
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Discharging assumptions

When we use →I in this way to get a line that does
not contain the number of an assumption in its as-
sumption set, we say that we have discharged that
assumption. This terminology is just a little mislead-
ing, since it implies that we can only do this one time
with a given assumption. In fact, there’s no such limi-
tation. Here is an example:

Sequent:

P →(Q&S), P →R,R →T, S∨ ∼Q,⊢ (P →S)&(P →T)

1 (1) P →Q A
2 (2) P →R A
3 (3) R→T A
4 (4) S∨ ∼Q A
5 (5) P A
1,5 (6) Q 1,5 →E
2,5 (7) R 2,5 →E
1,4,5 (8) S 4,6 ∨E
1,4 (9) P →S 8 →I (5)
2,3,5 (10) T 3,7 →E
2,3 (11) P →T 10 →I (5)
1,2,3,4 (12) (P →S)&(P →T) 9,11 &I



Reductio ad Absurdum (RAA)

Reductio ad
absurdum

Given an assumption (at line k )
and two sentences (at lines m
and n) one of which is a negation
of the other, conclude the nega-
tion of the assumption.

What this rule lets you do is conclude the negation of
an assumption if you are able to get a pair of lines,
one of which is the negation of the other.
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Like →I, this rule discharges an assumption: the as-
sumption set for the line added includes all the num-
bers in the assumption sets of the pair of lines, except
for the line number of the assumption.

. . . .
k (k ) φ

. . .
1,2,k (m) ψ

. . .
2,3 (n) ∼ψ

. . .
1,2,3 (x) ∼φ m,n RAA (k )

In this example, we’ve shown line m as depending on
assumption k but line n not depending on it. There
is actually no requirement that either of the lines con-
taining the contradictory pair contain the assumption
number of the assumption in its assumption set: both
may, or one may, or neither may.
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RAA corresponds to a familiar kind of argument: we
prove that something is not so by assuming that it is
and deducing an impossibility from that. The particu-
lar form of impossibility is a pair consisting of a sen-
tence and its negation. Such a pair is often called a
contradiction, and the pair of sentences are said to
be inconsistent.

As with →I, it is critical to get the assumption set right
when using RAA.

Here’s an example.

Sequent:

P →Q,Q→∼R,R ⊢∼P

1 (1) P →Q A
2 (2) Q→∼R A
3 (3) R A
4 (4) P A
1,4 (5) Q 1,4 →E
1,2,4 (6) ∼R 2,5 →E
1,2,3 (8) ∼P 3,6 RAA (4)
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